
Stand demonstrativ pentru controlul in bucla al unui motor de curent continuu
cu perii colectoare

DEAC George-Antoniu
NASTASE Robert-Paul

Facultatea de Inginerie Industrială și Robotică, Specializarea Robotică, Anul de studii 3, e-mail:
george@impromedia.ro

Conducător științific: S.l. dr. Ing. Cozmin CRISTOIU

Abstract: The paper presents the conceptual design, virtual prototype achievement and the real physical system
implementation of a test stand for electric motor cascading PID control using a modified firmware version of an
ODrive motor controller in order to control both, brushless and brushed DC electric motors. The initial version of the
controller board is dedicated only to brushless motors, but with current firmware upgrade the cheaper brushed motors
can be PID controlled proficiently. The firmware upgrade will also allow low latency force-feedback. Results from
testing of the positioning closed loop control are presented. The presentation test bench consists of: an Odrive
controller board (with a custom firmware), a typical brushed DC motor, a 4000cpr incremental optical encoder,
individually designed 3D printed mounting brackets, indicator and angular ruler, an additional ESP32 microcontroller
and an adjustable power supply.

Key words: Brushed motor, Brushless motor, cascading PID, motor controller, position control, force
feedback.
¶

1. INTRODUCTION

PID (proportional integrative derivative) are closed
loops that are widely used in industry and not only, for
systems that use electric motors. The control loop is
continuously calculating an error value, e(t), as the
difference between a desired setpoint, r(t), and a
measured process variable, y(t), and applies a correction
based on proportional, integral and derivative terms [1].
The classic PID control diagram is shown below in figure
1.

Figure 1 Classic PID control loop [2]

The general form of the control signal given by a PID
controller has the following mathematical form:

 u(t) = e(t) + + (1)

Where kp, ki, kd are a set of parameters used to tune the
strength of the P, I and D parameters of the controller.
Nowadays there are more architectures of PID (based on
same principles) like: feedback (classic), feedforward
and cascading. No matter the architecture, the key of a
good control of a system consists in the fine tuning of the
three parameters.
The ODrive motor controller board is a cascaded style
position, velocity and current control loop, as shown in
the diagram below.

Figure 2 ODrive board motor controller loop [3]

Each stage of the control loop is a variation on a PID
controller. This flexibility is essential as it allows the
ODrive to be used to control all kinds of mechanical
systems. The initial ODrive board is dedicated for
brushless DC motor control in association with rotational
encoders (optical incremental or HAL sensors). A typical
setup for brushless motor control is shown in figure 3.

Figure 3 Brushless motor setup [3]

In this setup, the Odrive is communicating with the
ESP32 interfacing microcontroller via UART using its
proprietary ASCII protocol implemented on the fibre
abstraction layer which also handles the communication
with the PC via the virtual USB serial port. The Odrive is
also connected to the optical encoder via the dedicated
axis0 A, B, Z pins and the motor leads are coupled to the

last two phases of the axis. The board pinouts are
configured as follows:

Figure 4 Odrive board layout [4]

Figure 5 ESP32 Dev Kit board layout [5]

The purpose of this paper is to present the methods
applied in order to upgrade the boards firmware with the
goal of extending its functionality and compatibility with
the cheaper brushed DC motors.

2. FIRMWARE UPGRADE

In order for the controller to work with brushed motors,
the original firmware state machine needed to be
modified with the specific entries in the following
enumerations marked by (*):

Motor Types:
0 High current (default)
1 Low current (not implemented yet)
2 Gimbal
3 (*)Brushed current
4 (*)Brushed voltage (this one is used currently)

Current State:
0 Undefined state (will fall through to idle)
1 Idle state (disable PWM and do nothing)
2 Startup Sequence (the actual sequence is defined by

the config.startup_ flags)
3 Full calibration sequence (run all calibration

procedures, then idle)
4 Motor calibration (run motor calibration)
5 Sensorless control (run sensorless control)
6 Encoder index search (run encoder index search)

7 Encoder offset calibration (run encoder offset
calibration)

8 Closed loop control (run closed loop control)
9 Axis lockspin (lockin spin)

10 Encoder direction find
11 (*)Brushed current control (not implemented)
12 (*)Brushed voltage control (run open loop brushed

voltage control)

The main modifications to the principal subroutines of
the firmware consist in: skipping the calibration
procedure if the motor type is set accordingly for brushed
motors, forcing a null encoder offset and implementing a
custom voltage timings function to drive and equilibrate
2 required phases out of the 3 phases on the axis.

Moreover, the ascii protocol logic was also modified to
facilitate faster response times and decreased latency for
providing better force feedback. Thus, a dedicated
command was integrated for the current comprised of
only one character for faster serial communication and
for the structure of the lookup table, hash map and
ordered map were tested instead of the previously slow
else/if chains.

For a typical communication scenario where the ESP32
microcontroller requires the current intensity from the
Odrive, there are 3 types of latency involved: the initial
packet transmission time for requesting the current, the
lag caused by the replying processor (Odrive) overhead,
the replied packet transmission time which holds the
current value and the receiving processor overhead
(ESP32). The last overhead represents the smallest one
and typically can’t be further improved, so is the replied
packet transmission time which only comprises a value.
This implementation tackles to improve the transmission
time of the initial packet and the replying processor
overhead. An expected time duration of a force feedback
communication is composed as follows:

10bit/symbol (there is a start and a stop bit + 1byte word)
115200 baud rate UART => 115200 bit/sec =>
0.0086ms/bit

Initial packet for requesting the current value = “r
axis0.motor.current_control.Iq_measured\n” = 42
symbols = 420bit/115200bit/sec = 3.65ms

Replied packet containing the current value = 10 symbols
= 100bit/115200bit/sec = 0.87ms

Average communication time = Packet transmission time
+ Reply processor overhead (Odrive) + Reply
transmission time + Receive processor overhead (ESP32)
The default transmission duration is around 5ms.

In conjunction with the communication latency, the
actual delay also encompasses the access time of the
else/if chains present in the command interpreter which
represents the most overhead of the replying processor,
in O(N) in time complexity, thus the access time grows
linearly to the number of entries in the protocol. The

introduction of a hash map which is O(1) time
complexity for access or an ordered map, of O(logN)
complexity, will further improve the speed by reducing
the reply processor overhead.

Figure 6 ODrive board motor controller cascading PID

The mathematical relations for the position loop, velocity
loop and current loop are written as follows:

a) Positioning loop
pos_error = pos_setpoint - pos_feedback
vel_cmd = pos_error * pos_gain + vel_feedforward

b) Velocity loop
vel_error = vel_cmd - vel_feedback
current_integral += vel_error * vel_integrator_gain
current_cmd = vel_error * vel_gain + current_integral
+ current_feedforward

c) Current loop
current_error = current_cmd - current_fb
voltage_integral += current_error
current_integrator_gain
voltage_cmd = current_error * current_gain +
voltage_integral (+ voltage_feedforward when we have
motor model)

Tuning the motor controller is an essential step to
unlock the full potential of the ODrive. Tuning allows for
the controller to quickly respond to disturbances or
changes in the system (such as an external force being
applied or a change in the setpoint) without becoming
unstable.

Correctly setting the three tuning parameters (called
gains) ensures that ODrive can control your motors in the
most effective way possible. For now, gain values were
determined empirically [4]. The gain values determined
were set up via controller interface using the following
command lines:

<axis>.controller.config.pos_gain = 100
<axis>.controller.config.vel_gain = 0.0005
<axis>.controller.config.vel_integrator_gain = 0.00005

The startup procedure usually requires running the
motor calibration sequence. In this case, since we use a
brushed motor and the commutation is done
mechanically an automatic calibration of the motor is not
required and therefore it’s skipped.

3. EXPERIMENTAL STAND

The test stand is shown in the figure 4 and it includes: the
Odrive controller board (with the upgraded firmware), a
brushed DC motor R406-011E Sanio Denki, an
incremental optical encoder 1000PKVF3 P1215 with
4000cpr, the mounting board and 3D printing brackets
with an indicator and an angular ruler, an additional
ESP32 microcontroller and an adjustable power supply.

Key electrical, mechanical and electromagnetic
specifications of the used motor and the controller board
are presented in tables 1 and 2:

Table 1: Motor specifications
Nominal Power 60W
Rated Torque 0.19 Nm
Rated Current 1.4 A
Rated Speed 3000 rpm
Max Speed 5000 rpm
Max angular acceleration 111x103 rad/s2

Rotor inertia 0.0108x10-3 kg·m2
Armature inductance 4.4 mH

Table 2: ODrive board specifications
Control 2 motors
Voltage 24 V
Peak current >100A per motor
Braking modes Brake resistor and

regenerative braking
Interfaces USB, Step/direction,

UART, Servo PWM,PPM,
CAN, digital and analog

pins.

Protocol Goto (positioning control
with trajectory planning),

Position command,
Velocity command, Torque

command

 Figure 7 Test stand

The encoder is assembled on the motor back shaft and
both are wired into the corresponding pins of the ODrive
board. The ESP32 microcontroller is communicating via
UART serial with the ODrive board and is responsible
with the displaying and interfacing of the system. During
testing commands are sent to the microcontroller and
drive board from a PC via the virtual serial on the fibre
abstraction layer.

4. EXPERIMENTAL PROCEDURES

The motion control test was set to measure angular
deviation from the programmed position for different
speeds and different number of revolutions: 10, 100,
1000 revolutions were programmed for different working
speeds (20%, 40% and 60% of the motor rated speed)
and the positioning repeatability and precision was
measured in each case. The unit of measurement was
converted from encoder pulses to degrees for expressing
the deviation in an absolute way for any system:

For angular positioning:

θ[] = =

θ[] = 0,09*θ[] (2)

For angular speed:

ω = = = =

ω[= *ω[(3)

The tests were repeated twice, first time without
trapezoidal trajectory and second time with trapezoidal
trajectory enabled. The angular acceleration and
deceleration (,) were set to be double in norm
compared to the angular velocity in order to constrain the
acceleration () time to 0,5sec. Experimental values
are presented in the following chapter.

5. RESULTS

Subsequently, the test results seem to closely follow an
ordered logarithmic pattern following:

Table 3

Repeatability Without Trapezoidal Trajectory

Rev
Speed 20% Speed 40% Speed

60%

Error [deg] Error [deg] Error
[deg]

10 (-)0.99 (-)0.81 (-)0.81

100 3.51 3.78 3.87

1000 6.3 5.13 16.2

10000 7.38 11.88 18.36
Ensuing, it is presented the corresponding line graph:

0
2
4
6
8

10
12
14
16
18
20

0 2000 4000 6000 8000 10000

A
bs

ol
ut

e
Er

ro
r

Revolutions

Speed 20 % Error [deg]

Speed 40 % Error [deg]

Speed 60% Error [deg]

Figure 8

Table 4

Repeatability With Trapezoidal Trajectory

Rev
Speed 20% Speed 40% Speed

60%

Error [deg] Error [deg] Error
[deg]

10 (-)1.17 (-)0.09 (-)0.45

100 3.69 3.96 3.42

1000 6.75 5.94 17.46

10000 7.83 11.43 18.9

Figure 9

From both of the previously provided tables it can
immediately be observed that the compensation trend in
the first row with 10rev increments tends to undershoot,
whilst in all the other cases there is an logarithmically
increasing overshoot error trend which starts to plateau
faster in the outer speed regions (20%, 60%). Whereas,
the middle speed region (40%) shows a wider error
variation tolerance.

Moreover, by comparing the similarity in the error
curves, it is shown that the main causative factor of the
errors is the improper empirical PID tuning, since the
results are similar, independently of the chosen trajectory
generation scheme.

To conclude, this test is essential in showing potential
deviations that are caused outside the PID positioning
control loops, such as improper field-oriented control
(FOC) commutation [7], potential causes influenced by
variation in the inertial loading profile of each trajectory
type (for instance a rectangular trajectory has by far the
highest inertia peaks, while in the case of a trapezoidal or

S-shaped trajectory the inertial loading is evenly
distributed in time) such as mechanical problems.

6. FUTURE IMPROVEMENTS

Lastly, the force feedback requires additional
experimentation using an oscilloscope to precisely
determine the communication time improvements by
analyzing each transmitted packet time domain and
the corresponding delay between them.

7. CONCLUSIONS

REFERENCES

[1] M. Alboelhassan, “A Proportional Integral Derivative
(PID) Feedback Control without a Subsidiary Speed
Loop”, Acta Polytechnica Vol. 48 No. 3/2008, Czech
Technical University in Prague

[2] Arturo Urquizo. PID Controller—Wikipedia, the Free
Encyclopedia. 2011. Available online:

 https://en.wikipedia.org/wiki/PID_controller (accessed on
30 March 2018).

[3] *** https://docs.odriverobotics.com/control.html
[4] *** https://github.com/madcowswe/ODriveHardware
[5] *** https://randomnerdtutorials.com/wp-

content/uploads/2018/08/ESP32-DOIT-DEVKIT-V1-
Board-Pinout-36-GPIOs-Copy-768x554.jpg

[6] J.G. Ziegler, N.B. Nichols “Optimum Settings for
Automatic Controllers”, TRANSACTIONS OF THE
A.S.M.E. NOVEMBER 1942

[7] *** https://en.wikipedia.org/wiki/Vector_control_(motor)

0
2
4
6
8

10
12
14
16
18
20

0 2000 4000 6000 8000 10000

A
bs

ol
ut

e
Er

ro
r

Revolutions

Speed 20 % Error [deg]

Speed 40 % Error [deg]

Speed 60% Error [deg]

