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Abstract: The paper presents the conceptual design, virtual prototype achievement and the real physical system
implementation of a test stand for electric motor cascading PID control using a modified firmware version of an 
ODrive motor controller in order to control both, brushless and brushed DC electric motors. The initial version of the 
controller board is dedicated only to brushless motors, but with current firmware upgrade the cheaper brushed motors 
can be PID controlled proficiently. The firmware upgrade will also allow low latency force-feedback. Results from 
testing of the positioning closed loop control are presented. The presentation test bench consists of: an Odrive 
controller board (with a custom firmware), a typical brushed DC motor, a 4000cpr incremental optical encoder, 
individually designed 3D printed mounting brackets, indicator and angular ruler, an additional ESP32 microcontroller
and an adjustable power supply.
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1. INTRODUCTION

PID (proportional integrative derivative) are closed 
loops that are widely used in industry and not only, for 
systems that use electric motors. The control loop is 
continuously calculating an error value, e(t), as the 
difference between a desired setpoint, r(t), and a 
measured process variable, y(t), and applies a correction 
based on proportional, integral and derivative terms [1].
The classic PID control diagram is shown below in figure 
1.

Figure 1 Classic PID control loop [2]

The general form of the control signal given by a PID 
controller has the following mathematical form:

           u(t) = e(t) + + (1)

Where kp, ki, kd are a set of parameters used to tune the 
strength of the P, I and D parameters of the controller. 
Nowadays there are more architectures of PID (based on 
same principles) like: feedback (classic), feedforward 
and cascading. No matter the architecture, the key of a 
good control of a system consists in the fine tuning of the 
three parameters. 
The ODrive motor controller board is a cascaded style 
position, velocity and current control loop, as shown in 
the diagram below.

Figure 2 ODrive board motor controller loop [3]

Each stage of the control loop is a variation on a PID 
controller. This flexibility is essential as it allows the 
ODrive to be used to control all kinds of mechanical 
systems. The initial ODrive board is dedicated for 
brushless DC motor control in association with rotational 
encoders (optical incremental or HAL sensors). A typical 
setup for brushless motor control is shown in figure 3.

Figure 3 Brushless motor setup [3]

In this setup, the Odrive is communicating with the 
ESP32 interfacing microcontroller via UART using its
proprietary ASCII protocol implemented on the fibre 
abstraction layer which also handles the communication 
with the PC via the virtual USB serial port. The Odrive is 
also connected to the optical encoder via the dedicated 
axis0 A, B, Z pins and the motor leads are coupled to the 



last two phases of the axis. The board pinouts are 
configured as follows:

Figure 4 Odrive board layout [4]

Figure 5 ESP32 Dev Kit board layout [5]

The purpose of this paper is to present the methods 
applied in order to upgrade the boards firmware with the 
goal of extending its functionality and compatibility with 
the cheaper brushed DC motors.

2. FIRMWARE UPGRADE

In order for the controller to work with brushed motors, 
the original firmware state machine needed to be 
modified with the specific entries in the following 
enumerations marked by (*):

Motor Types:
0 High current (default)
1 Low current (not implemented yet)
2 Gimbal
3 (*)Brushed current
4 (*)Brushed voltage (this one is used currently)

Current State:
0 Undefined state (will fall through to idle)
1 Idle state (disable PWM and do nothing)
2 Startup Sequence (the actual sequence is defined by 

the config.startup_ flags)
3 Full calibration sequence (run all calibration 

procedures, then idle)
4 Motor calibration (run motor calibration)
5 Sensorless control (run sensorless control)
6 Encoder index search (run encoder index search)

7 Encoder offset calibration (run encoder offset 
calibration)

8 Closed loop control (run closed loop control)
9 Axis lockspin (lockin spin)

10 Encoder direction find
11 (*)Brushed current control (not implemented)
12 (*)Brushed voltage control (run open loop brushed 

voltage control)

The main modifications to the principal subroutines of 
the firmware consist in: skipping the calibration 
procedure if the motor type is set accordingly for brushed 
motors, forcing a null encoder offset and implementing a
custom voltage timings function to drive and equilibrate 
2 required phases out of the 3 phases on the axis.

Moreover, the ascii protocol logic was also modified to 
facilitate faster response times and decreased latency for 
providing better force feedback. Thus, a dedicated 
command was integrated for the current comprised of 
only one character for faster serial communication and 
for the structure of the lookup table, hash map and 
ordered map were tested instead of the previously slow 
else/if chains.

For a typical communication scenario where the ESP32 
microcontroller requires the current intensity from the 
Odrive, there are 3 types of latency involved: the initial 
packet transmission time for requesting the current, the 
lag caused by the replying processor (Odrive) overhead, 
the replied packet transmission time which holds the 
current value and the receiving processor overhead 
(ESP32). The last overhead represents the smallest one 
and typically can’t be further improved, so is the replied 
packet transmission time which only comprises a value.
This implementation tackles to improve the transmission 
time of the initial packet and the replying processor 
overhead. An expected time duration of a force feedback 
communication is composed as follows:

10bit/symbol (there is a start and a stop bit + 1byte word)
115200 baud rate UART => 115200 bit/sec => 
0.0086ms/bit

Initial packet for requesting the current value = “r
axis0.motor.current_control.Iq_measured\n” = 42
symbols = 420bit/115200bit/sec = 3.65ms

Replied packet containing the current value = 10 symbols 
= 100bit/115200bit/sec = 0.87ms

Average communication time = Packet transmission time 
+ Reply processor overhead (Odrive) + Reply 
transmission time + Receive processor overhead (ESP32)
The default transmission duration is around 5ms.

In conjunction with the communication latency, the
actual delay also encompasses the access time of the 
else/if chains present in the command interpreter which 
represents the most overhead of the replying processor,
in O(N) in time complexity, thus the access time grows 
linearly to the number of entries in the protocol. The 



introduction of a hash map which is O(1) time 
complexity for access or an ordered map, of O(logN)
complexity, will further improve the speed by reducing 
the reply processor overhead.

Figure 6 ODrive board motor controller cascading PID

The mathematical relations for the position loop, velocity 
loop and current loop are written as follows:

a) Positioning loop
pos_error = pos_setpoint - pos_feedback
vel_cmd = pos_error * pos_gain + vel_feedforward

b) Velocity loop
vel_error = vel_cmd - vel_feedback
current_integral += vel_error * vel_integrator_gain
current_cmd = vel_error * vel_gain + current_integral 
+ current_feedforward

c) Current loop
current_error = current_cmd - current_fb
voltage_integral += current_error 
current_integrator_gain
voltage_cmd = current_error * current_gain + 
voltage_integral (+ voltage_feedforward when we have 
motor model)

Tuning the motor controller is an essential step to 
unlock the full potential of the ODrive. Tuning allows for 
the controller to quickly respond to disturbances or 
changes in the system (such as an external force being 
applied or a change in the setpoint) without becoming 
unstable.

Correctly setting the three tuning parameters (called 
gains) ensures that ODrive can control your motors in the 
most effective way possible. For now, gain values were 
determined empirically [4]. The gain values determined 
were set up via controller interface using the following 
command lines:

<axis>.controller.config.pos_gain = 100
<axis>.controller.config.vel_gain = 0.0005
<axis>.controller.config.vel_integrator_gain = 0.00005

The startup procedure usually requires running the 
motor calibration sequence. In this case, since we use a 
brushed motor and the commutation is done 
mechanically an automatic calibration of the motor is not 
required and therefore it’s skipped.

3. EXPERIMENTAL STAND 

The test stand is shown in the figure 4 and it includes: the 
Odrive controller board (with the upgraded firmware), a 
brushed DC motor R406-011E Sanio Denki, an 
incremental optical encoder 1000PKVF3 P1215 with 
4000cpr, the mounting board and 3D printing brackets 
with an indicator and an angular ruler, an additional 
ESP32 microcontroller and an adjustable power supply.

Key electrical, mechanical and electromagnetic 
specifications of the used motor and the controller board 
are presented in tables 1 and 2:

Table 1: Motor specifications
Nominal Power 60W
Rated Torque 0.19 Nm
Rated Current 1.4 A
Rated Speed 3000 rpm
Max Speed 5000 rpm
Max angular acceleration 111x103 rad/s2

Rotor inertia 0.0108x10-3 kg·m2
Armature inductance 4.4 mH

Table 2: ODrive board specifications
Control 2 motors
Voltage 24 V
Peak current >100A per motor
Braking modes Brake resistor and 

regenerative braking
Interfaces USB, Step/direction, 

UART, Servo PWM,PPM, 
CAN, digital and analog 

pins.



Protocol Goto (positioning control 
with trajectory planning), 

Position command, 
Velocity command, Torque 

command

                                  Figure 7 Test stand

The encoder is assembled on the motor back shaft and 
both are wired into the corresponding pins of the ODrive 
board. The ESP32 microcontroller is communicating via 
UART serial with the ODrive board and is responsible 
with the displaying and interfacing of the system. During 
testing commands are sent to the microcontroller and 
drive board from a PC via the virtual serial on the fibre 
abstraction layer.

4. EXPERIMENTAL PROCEDURES

The motion control test was set to measure angular 
deviation from the programmed position for different 
speeds and different number of revolutions: 10, 100, 
1000 revolutions were programmed for different working 
speeds (20%, 40% and 60% of the motor rated speed) 
and the positioning repeatability and precision was 
measured in each case. The unit of measurement was 
converted from encoder pulses to degrees for expressing 
the deviation in an absolute way for any system:

For angular positioning:

θ[ ] = =

θ[ ] = 0,09*θ[ ] (2)

For angular speed: 

ω = = = =

ω[ = *ω[ (3)

The tests were repeated twice, first time without 
trapezoidal trajectory and second time with trapezoidal 
trajectory enabled. The angular acceleration and
deceleration ( , ) were set to be double in norm 
compared to the angular velocity in order to constrain the 
acceleration ( ) time to 0,5sec. Experimental values 
are presented in the following chapter.

5. RESULTS

Subsequently, the test results seem to closely follow an 
ordered logarithmic pattern following:

Table 3

Repeatability Without Trapezoidal Trajectory

Rev
Speed 20% Speed 40% Speed 

60%

Error [deg] Error [deg] Error 
[deg]

10 (-)0.99 (-)0.81 (-)0.81

100 3.51 3.78 3.87

1000 6.3 5.13 16.2

10000 7.38 11.88 18.36
Ensuing, it is presented the corresponding line graph:
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Figure 8

Table 4

Repeatability With Trapezoidal Trajectory

Rev
Speed 20% Speed 40% Speed 

60%

Error [deg] Error [deg] Error 
[deg]

10 (-)1.17 (-)0.09 (-)0.45

100 3.69 3.96 3.42

1000 6.75 5.94 17.46

10000 7.83 11.43 18.9

Figure 9

From both of the previously provided tables it can 
immediately be observed that the compensation trend in 
the first row with 10rev increments tends to undershoot, 
whilst in all the other cases there is an logarithmically 
increasing overshoot error trend which starts to plateau 
faster in the outer speed regions (20%, 60%). Whereas, 
the middle speed region (40%) shows a wider error 
variation tolerance.

Moreover, by comparing the similarity in the error 
curves, it is shown that the main causative factor of the 
errors is the improper empirical PID tuning, since the 
results are similar, independently of the chosen trajectory
generation scheme.

To conclude, this test is essential in showing potential 
deviations that are caused outside the PID positioning
control loops, such as improper field-oriented control 
(FOC) commutation [7], potential causes influenced by 
variation in the inertial loading profile of each trajectory 
type (for instance a rectangular trajectory has by far the 
highest inertia peaks, while in the case of a trapezoidal or 

S-shaped trajectory the inertial loading is evenly 
distributed in time) such as mechanical problems.

6. FUTURE IMPROVEMENTS

Lastly, the force feedback requires additional 
experimentation using an oscilloscope to precisely 
determine the communication time improvements by 
analyzing each transmitted packet time domain and 
the corresponding delay between them.

7. CONCLUSIONS
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