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The study consists in modeling and simulation techniques of the sloshing phaenomenon
when semi-filled bottles are manipulated in an industrial robotic cell environment. The
preparation of the 3D model of the plastic bottle by simplifying the complex surfaces, in
order to obtain simulation results as close as possible to reality, as well as the stopper
design from a simple rectangular sketch, and the liquid definition inside the bottle were the
first steps of the study. The proper choice of the material properties, model parametrization
and mesh generation followed the attempt. A brief description of the analysis, the formulae
used as theory background and the explicit dynamic simulation where the main targets of the
research. The results were validated by experiments and personal conclusions were drawn.

1. Introduction

The studied robotic cell (Fig. 1.1) integrates an articulated arm type robot with 6 numerically
controlled axes. This cell is a virtual copy of an industrial application found in [1]. The red border
highlights the area considered in the research.

Fig. 1.1 The studied robotic cell in the NX interface
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The paper consists in explicit dynamics simulation studies of the fluid behavior of the manipulated
bottles (Fig. 1.2), considering an accidental sudden stop of the conveior in ANSYS Workbench 19.0
environment.

Fig. 1.2 The bottle package assembly in the NX interface: belt conveyor — plastic bottle boxes — stopper

The objective was to emphasize the fluid behaviour and the sloshing phenomenon, which are
advanced simulation targets. The liquid energy, the total velocity, as well as main structural response
results regarding the bottle behavior were processed and conclusion were summarized. The simulation
results were verified experimentally, in the Faculty laboratory employing a color liquid and a transparent
bottle. In order to obtain accurate and fast analysis results the computational model was simplified, and
only a sigle plastic bottle and the stopper were considered.

2. State of art regarding the sloshing prenomenon

Many published papers investigate the finite element formulation of the liquid sloshing in partially
filled rigid tanks of different shapes [2], [3], [4]. For exemplification purposes one of the research articles
[4] was chosen to describe the mathematical model of the phaenomenon, where the liquid domain is
divided into two-dimensional four-node rectangular elements with the liquid velocity potential
representing the nodal degrees of freedom. The sloshing effects induced were studied in terms of the slosh
frequencies, liquid velocity field, free surface displacement and hydrodynamic forces acting on the tank
walls. In this regard, the model is employed to study the effects of inserting a bottom-mounted vertical
rigid baffle, as well as side-mounted horizontal baffles that are wholly immersed in the liquid region, in
an attempt to investigate their viability in acting as slosh suppression devices.
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Fig. 2.2 Rigid rectangular tank. Liquid velocity field at the (a) first and (b) second slosh mode [4]

Although most of the research describe the mathematical model and experimental investigation of
the liquid sloshing few papers assess the dynamics from a computational dynamics perspective, due to
the numerical and modeling issues. On the other hand, recent advances in the FEM solvers surpass the
numerical problems. That is why a combination Lagrange-Euler approach was chosen and the
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investigation of the liquid sloshing phenomenon was carried out employing explicit dynamics
functionalities.

3. Preparation of the computational model

The plastic bottle model was imported from NX in a neutral STEP format. Therefore a “cleaning”
attempt for geometry was needed, and defeaturing commands were performed. The stopper was
created in ANSYS Workbench because a simplified geometry was required. This stage of "cleaning"
the model is done because we want to get the most realistic results.

The steps of “cleaning" the geometry represent the simplification of the model, All the details that
ae not relevant for the explicit dynamics simulation were deleted and a high quality mesh was
prepared by merging or face splits, as well as projections and slice commands. All the model
praparation stages are illustrated in Fig.3.1 and 3.2.
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Fig. 3.1 Model preparation stages in DesignModeler Fig. 3.2 Final geometry

Material description was done in the Engineering Data interface (Fig. 3.3). In addition to the
default material used for the stopper — structural steel, plastic and a water-like material were included
for the bottle and the bottle content.
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Fig. 3.3 Material properties denied in Engineering database
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A controlled mesh was generated (Fig. 3.4) and multiple quality criteria checks were completed
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Fig. 3.4 The mesh settings and mesh quality checks

Explicit dynamics simulation

Explicit dynamic is employed for transient phenomena with short time duration and extreme
nonlinearities [2]. This includes: extremely large deformations, rupture, destruction of the materials and
structures, very nonlinear material behavior. The result is a permanent deformation of the assemblies,
loose of structural stability or severe fluid flow phenomena. Some of the peculiarities of the explicit
dynamics analysis are:
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Time is sampled in very small time steps and the solution is direcly solved for each time
increment.

During the simulation the solution depends only on the results from the previous time step;

It involves a very short end-time (microseconds) - so the duration of the simulated
phenomenon is very short;

The time step size depends on the mesh;

Can solve problems with severe nonlinearities.

The explicit algorithm has the advantage that it does not calculate the stiffness matrix. This
significantly reduces the computation time for transient dynamic regimes. Nowadays the explicit
algorithm allows the control of calculation errors. The main differences between implicit and explicit
solvers are, in fact, how the equilibrium equations are solved. Some other pecularities of the algorithm

are:
+

+
-
-
+

Just like the default implicit solver it considers mass/inertia and damping, but uses a different
solver;

Iterations are not required. Results are calculated directly (or explicitly) for each time step;
During coputation it does not matrix invertion;

There is no inherent limit to the size of the time step;

The time step must be less than the Courrant time step.

A brief description of the computation algorithms is: — accelerations are calculated {+} at time n,
velocities £} at time n + % and deformations {x} at time n+1. Based on displacements {x}, the strains
{c} are assessed. Then the stress vector is determined {c}. And the cycle is repeated for the next time

step.
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The Explicit Dynamics solver uses a differential time integration scheme called the Leapfrog
method [5]. After calculating the forces in the nodes (resulting from internal stresses, contact or
boundary conditions), the nodal accelerations are obtained by dividing the force to the mass:

Xi=b;+ % 1)
where x; are the components of nodal acceleration (i = 1,2,3), F; are the forces acting in the nodes, bi

are the components of the acceleration of the body and m is the nodal mass.
With the accelerations at the time n - ¥ the speeds are calculated at the time n + 1/2:

2z g2y gnaen @
Finally, the node positions are updated at time n + 1 by integrating the speeds:
X1 o 2 a2 @3)

For each time step these equations are explicitly solved for each element in the model, based on the
input values at the end of the previous step. In the first the solution is computed based on the initial
conditions. When solving the equations only the conservation of mass and momentum is applied.
However, in explicit simulations, mass, momentum and energy should be conserved. That is why
energy conservation is constantly monitored during computation on the graph, which also illustrates
the quality of the results.

Solution settings were configured as illustrated in Fig. 4.1. The stopper was considered rigid. The
simulation regime was considered: the conveior velocity: 500 mm/s; total duration of the analysis 0.2s,
the duration until the impact: 0.06 s
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Fig. 4.1 Analysis settings

5. Results discussion

In an explicit dynamics analysis the model encompasses not only the equations of motion but also
the propagation of shock waves phenomenon throughout the material. Un example of shock waves
modeling is the Equation of state for the Hugoniot shock (Fig. 5.1), that allows the sloshing waves to
occur on the results. This model was chosen for the liquid behavior.
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Fig. 5.1 The Hugoniot shock description [6]

The Hugoniot shock describes the location of all possible thermodynamic states in which there
may be a material behind a shock, projected on a two-dimensional state plane [6]. Therefore, it is a set of
equilibrium states and does not specifically represent the way in which a material undergoes
transformations. Weak shocks are isentropic (the entropy is constant) - the material is charged from the
initial state to the final state by a compression wave with converging characteristics (Fig. 5.1.a). When a
severe shock occurs these simplifications can no longer be assumed. However, for engineering
calculations, the isentropic is considered to be close enough to Hugoniot that it can be considered a linear
approximation (Fig. 5.1.b). If between the initial state and the final state the charge is given by
Hugoniot’s law for an "equivalent™ compression wave, then the shock conditions can be modeled by a
straight line between the initial and final state. This line is called the Rayleigh-Hugoniot line and has the
following equation:

i

P2 —p =l (Pl - p_z) (4)

The solution was monitored employing the kinetic and internal and contact energy and the
hourglass energy whici gives a measure of the mesh quality and model behaviour (Fig. 5.2).

S~

- — S R —

Fig. 5.2 Energy summary during computation.

During the simulation the kinetic energy (light blue) decreases when the impact occurs, the
internal energy (purple) increases being influenced by the model displacement and strain in the model
and the hourglass energy (red) helps to identify mesh errors, if the values reach a maximum allowable
limit, which did not happen in our case.

Figures 5.3 to 5.6 summarize the main simulation results.
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Maximul internal energy of the
liquid is 0,399 J/Kkg.

——— . pr= e

Fig. 5.6 The results obtainea fromu fhe processing of water energy “

The simulation results were validated by experimental tests in the faculty Logistics laboratory
(Fig. 5.7). The same behaviour of the liquid was observed.

Ml e
Fig. 5.7 Laboratory experiments

6. Conclusion

The simulation was successfully completed in 19.5 hours on a laptop. The model was initially
generated by many complex surfaces, A detailed and manual simplification of the polyethilene botlle
model was needed in order to obtain accurate results. The solution was attained using two solvers:
Lagrange solver for the structural components and the Euler solver was activated for the liquid
behaviour, which allowed the visualization of the sloshing phenomenon. The visual effect was
diminished by the fact that the bottle was considered almost fully filled. Future work may focus on a
liquid mixture and bubbles effect.
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