
Student Scientific Papers Session 2023

DESIGNING AN ALGORITHM AND DEVELOPING A COMPUTER

APPLICATION FOR AUTOMATING THE DOCUMENT FLOW

REQUIRED FOR DOMAIN PRACTICE ACTIVITY

IVAN Emanuel, GHEORGHIȚĂ Vlad
Faculty: IIR, Specialization: IAII, Year of Study: 4, Email: emanuelivan18@gmail.com

ABSTRACT: Obtaining the necessary documents for university processes is often a complex and time-

consuming task. Automating the processes of obtaining and managing the documents required for

university processes, as well as developing web applications that facilitate these processes, represents

a major innovation in the field of education, addressing the increasing needs of educational

institutions, students, and the personnel involved in these processes.

KEYWORDS: domain practice, administration, web service, database.

1. Introduction

The documents required for the domain practice process involve completing certain documents

without which the process cannot begin. These include a collaboration agreement and a practice protocol

between the faculty and a company willing to accept students for practice, as well as a framework

agreement concluded between the same company, student, and faculty. Completing these documents

involves working with confidential data of the student, faculty, and company, which is why the security

level of the application necessary to fulfill its intended purpose needs to be high.

The documents required to conclude the practice process encompass a collection of documents,

including a report, a portfolio, and a Gantt chart. These can be completed during the practice period and

serve as a demonstration of the activities carried out within the company. At the end of the practice, the

student receives a certificate from the company attesting to their completion of the practice within the

company.

This paper aims to automate the generation of documents necessary for the domain practice

within the IIR faculty by involving student interaction and the involvement of faculty staff through a web

application.

Web applications are typically built with a layered architecture known as the layered architectural

model. This refers to the separation of business logic, data presentation, and user interaction into distinct

layers. This approach helps create applications that are easier to maintain and scale. Typically, these

layers include the following:

- Presentation layer: This layer deals with the presentation of data to users and their interaction

with it. This part of the web application is usually implemented using HTML, CSS, and

JavaScript.

- Application layer: This layer contains the business logic of the application. It is responsible

for data processing and interaction with the database. This layer is often implemented using a

backend programming language such as Python, Ruby, PHP, or Node.js.

- Data layer: This layer manages the database and allows access to it. This layer can be

implemented using a Database Management System (DBMS) such as MySQL, PostgreSQL,

MongoDB, or Access.

- Infrastructure layer: This is the layer that handles infrastructure-related aspects such as server

management, security, and scalability of the web application. This layer can be implemented

using tools such as Docker, Kubernetes, or AWS. [1]

These layers can communicate with each other, enabling the application to function efficiently.

Additionally, there are other architectural approaches, such as service-based architecture or event-driven

architecture, which can be used based on the specific needs of the application. [2]

65

Designing an Algorithm and Developing an Information System to Automate the Flow of Documents Required for

Field Practice Activities

Figure 1. General architecture of web applications [3]

2. Current Stage

Currently, the application offers the possibility to generate and download several

documents required for the completion and initiation of the practice process by making queries

based on the information stored in the database. These functionalities are accessible through an

interface built with HTML, CSS (using the Bootstrap framework), and JavaScript, running

within a Python application using the Flask library.

By navigating to a predefined endpoint “/documents” of the web application, which loads

the “documents.html” page, the personnel involved in validating the practice process can

generate the necessary documents for each student based on the selections made in the form. The

HTML page is a template populated with Flask's template tags (“{{”, “}}”, “{%”, “%}”), which

allow integrating the logic created in Python with HTML using the Jinja2 library. The page can

be loaded using the “render_template('convention.html')” function at the endpoint.

The form includes validations both on the presentation and logic side, providing data

about the student who wants to start the domain practice, the name of the company involved, and

a selectable list of documents that can be generated. Figure 2 shows the form, which includes a

security token “{{ form.csrf_token }}” generated by the HTML form. This token protects the

application against Cross-Site Request Forgery (CSRF) attacks, which can lead to the execution

of unwanted actions by an unauthorized user.

66

Designing an Algorithm and Developing an Information System to Automate the Flow of Documents Required for

Field Practice Activities

Figure 2. Document Generation and Download Form

The form validation is done at the class level, specifically the “DownloadForm” class,

which uses the parent class “FlaskForm” as shown in Figure 3. The “FlaskForm” class does not

allow the form to be submitted in an intermediate state of completion. The class allows for

initializing default values for the fields using “default” and validating the choices made using

“validators”.

Figure 3. Document Generation and Download Form Class

67

Designing an Algorithm and Developing an Information System to Automate the Flow of Documents Required for

Field Practice Activities

The value list of the “Student” field is dynamic, updating based on the selections made in

the “Specialization” and “Year of Study” fields. It also offers the possibility of searching within

the selection list due to its “select2” attribute (Figure 4). Data updating is achieved by integrating

a JavaScript function into the “documents.html” document. The “updateStudentNameOptions”

method calls an AJAX function to the endpoint stored in the “getStudentUrl” variable, which

retrieves the student values from the database based on the specialization and year of study

criteria. These values are then loaded into the selector, and the selector is re-initialized with the

default value by calling the “initializeSelect2” function.

Figure 4. Student Field Update Function

Based on the selections made in the form on the “documents.html” page and after

validating it, a data dictionary is generated by invoking the “get_context” function. This involves

calling a series of functions based on the student's ID, company, and supervisor to generate the

completed documents selected by the designated person. The function calls the “get_student”

method to retrieve the student's data, the “get_supervisor” method for the designated department

supervisor's data, the “get_company” method for the company's data, and the

“get_company_representative” and “get_company_tutor” methods for the company

representative and the tutor chosen for the student within the company. Each of these helper

functions returns a dictionary of values containing data extracted based on executed SQL queries

using the “pyodbc” module. Thus, personal information will not be exposed to the web page,

only the ID, which can be encrypted and decrypted as needed. The helper dictionaries that make

up the template context are passed through a function called “replace_empty_values_with_dash,”

68

Designing an Algorithm and Developing an Information System to Automate the Flow of Documents Required for

Field Practice Activities

which standardizes the appearance of the values in each dictionary regardless of their initial

appearance.

Figure 5. Data Dictionary (Context) Generation

Based on this data dictionary, a temporary file is created in memory to save all the

selected documents from the form. This is achieved by calling the “save_docx_file” function for

each document, which invokes the “render” function from the “DocxTemplate” class. The

“render” function takes the previously generated dictionary as an input parameter. This function

replaces the values of the keys found in the docx template (Figure 7) with the corresponding

values from the context generated for each student (Figure 5).

Figure 6. Generation of a docx Document Based on the Dictionary and docx Template

69

Designing an Algorithm and Developing an Information System to Automate the Flow of Documents Required for

Field Practice Activities

The template can contain both static and dynamic values, allowing for logical operations

(“if”, “while”, “for”) to be performed within it, given the presence of the labels shown in Figure

2.

The values in the context can be accessed in the template using

“{{DICTIONARY_KEY}}”, and it is possible to navigate within it using the dot notation.

Figure 7. Example docx Template

3. Conclusion

I consider the automation of generating the necessary documents for field practice to be

an important contribution to the field of business process automation and web application

development. By using these solutions, significant benefits in terms of efficiency and reduction

of human errors can be achieved, enabling better time and resource management. However, there

are still technical and research challenges that need to be addressed, such as ensuring the security

of access endpoints and developing new functionalities to meet the evolving needs of the

university.

4. Bibliography

[1]. Kumar, Bimal. (2015). Layered architecture for mobile web based applications. Asia-

Pacific World Congress on Computer Science and Engineering, APWC on CSE 2014.

10.1109/APWCCSE.2014.7053865.

[2]. Corcho, Oscar & Arco, Jose & Arias Fisteus, Jesus. (2006). Web Services:

Introduction and State of the Art.

[3]. Deremuk I. (2021). “Modern Web Application Architecture”.

70

