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ABSTRACT: This paper aims to automate processes in MATLAB using a script that measures motor 

speed, issuing PWM commands to characterize the response of a 100:1 DC gearmotor, using code 

sections to partition scripts into smaller parts, using for loops to repeat blocks of code, using text tags 

and comments to organize and document matlab scripts, and creating and calling a MATLAB function. 
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1. Introduction 

 The project presents the modeling of a motorcycle that will have a two-wheeled robot that can 

balance and move using a rotating disc, which we will call the flywheel from now on, to compensate for 

the motorcycle's loss of balance. The motorcycle is controlled by an Arduino Nano 33 IoT module, an 

Arduino Nano Motor Carrier module, a DC motor to drive the rear wheel, a DC motor with encoder to 

control the flywheel, and a standard servo motor to steer the motorcycle's handlebars. 

 The objectives of this project are to: show how to program the motorcycle with Simulink, the 

control of the balance algorithm when moving in a straight line, and the improvement of the quality of the 

control algorithms through rapid prototyping. 

2. The current stage 

 Building and programming a motorcycle model that balances and steers itself using a flywheel, 

using the knowledge gained in the courses, of physics, control algorithms and simulating the general 

behavior of a vehicle. 

 Before starting modeling and working on the project, the motorcycle must be assembled from 

the mechanical and electronic components. The estimated time for this operation is about 45 minutes.  

 For this project, the following simulation environments are used: 

− Matlab combines a desktop environment set for analysis and iterative design processes with a 

programming language that directly expresses the mathematics of matrices and arrays. Includes the 

Live Editor for creating scripts that combine code, output, and formatted text into an executable 

notepad [7]; 

− Simulink is an environment for multi-domain simulation and model-based design. It supports 

system-level design, simulation, automatic code generation, and continuous testing and verification 

of embedded systems [7]; 

− Simscape multibody provides a multibody simulation environment for 3D mechanical systems such 

as robots. One can model multibody systems using blocks representing bodies, joints, constraints, 

force elements, and sensors [7]; 

− Matlab support package for arduino hardware is the package through which Matlab can 

communicate interactively with an Arduino board [7]; 

−  Simulink support package for arduino hardware is the set of dedicated Simulink libraries to 

develop and simulate algorithms that run autonomously on Arduino [7].  

3.  Modeling the motorcycle and designing a controller for balancing 
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 Modeling the motorcycle and designing a balancing controller aims to: model a dynamic system 

using knowledge of the underlying physical principles, design a feedback controller and use Simulink for 

rapid prototyping and controller design. 

 The motorcycle balancing problem can be thought of as an inverted pendulum control problem. 

Indeed, looking at a standing motorcycle from behind, it can look like a pendulum rod with a flywheel 

attached to it. 

 In Figure 1, the following notable points are found: A is the axis of rotation of the rotational couple 

between the pendulum rod and the ground. In this context of rotation, the A-axis means the axis passing 

through A and perpendicular to the plane of the paper. lAD is the length of the pendulum rod, i.e. the size 

of the motorcycle frame; B is the center of mass of the pendulum rod. We assume that the pendulum rod 

has a uniform density, which means that point B will be midway between A and D; C is the axis of rotation 

of the rotational couple between the pendulum rod and the flywheel. The flywheel is driven by a DC motor 

[1]. 

 

Fig. 1. The inverted pendulum 

The considered system has two degrees of freedom and, therefore, the state of the system can be 

described by two coordinates: the angle of inclination of the pendulum rod θ, which is the angle between 

the rod and the vertical, so equal to 0° when the pendulum is perfectly vertical, positive when the pendulum 

swings clockwise and negative when the pendulum swings counterclockwise, the angular displacement of 

the flywheel. Since the flywheel is axially symmetric, we are not interested in the actual angular 

displacement but in the rotational speed (ω) and acceleration (�̇�) [1]. 

Newton: 𝐹 = 𝑚 × 𝑎 ⇒ 𝜏 = 𝐼 × �̈�                                                              (1) 

          𝐼 = 𝑚 × 𝑟2                                                                        (2) 

Huygens-Steiner: 𝑙𝑧 = 𝑙𝑐𝑚 × 𝑎
2 

𝜏 = 𝜏𝑔𝑟 + 𝜏𝑔𝑤 + 𝜏𝑚 

𝜏𝑔𝑤 = 𝑚𝑤 × 𝑔 × 𝑙𝐴𝐶 × sin 𝜃 

𝜏𝑔𝑟 = 𝑚𝑟 × 𝑔 × 𝑙𝐴𝐵 × sin 𝜃 

    𝜏𝑚 = 𝐼𝑤
𝐶 × (�̇� + �̈�)                                                                 (3) 

 In addition to the torques created by gravity, the torque created by the flywheel motor must be 

considered. The torque applied to the flywheel and the torque applied to the pendulum rod have the same 

absolute value but are applied in different directions. We will define this torque as τm and assume that we 

have control over τm [2]. 

 Now the equations for the moments of inertia of the key components are written. 
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 The moment of inertia of the flywheel about point C. The above formula calculates the moment of 

inertia of a disk rotating about its center of mass [2]: 

𝑙𝑤
𝐶 = 0,5 × 𝑚𝑤 × 𝑅

2      (4) 

 The flywheel rotates about point C being driven by the DC motor, but the same flywheel also 

rotates about point A along with the pendulum rod. For this reason, the moment of inertia of the flywheel 

about point A must also be calculated, IW
A. The previously described parallel axis theorem (Huygens-

Steiner theorem) applies to the motorcycle [2]: 

𝐼𝑤
𝐴 = 𝐼𝑤

𝐶 + 𝑚𝑤  ×  𝑙𝐴𝐶
2 = 0,5 × 𝑚𝑤  ×  𝑅

2 + 𝑚𝑤  ×  𝑙𝐴𝐶
2 = 𝑚𝑤(0,5 × 𝑅

2 + 𝑙𝐴𝐶
2 )                   (5) 

 Continue by calculating the moment of inertia of the pendulum rod about its center of mass B: [2] 

𝐼𝑟
𝐵 = 

1

12
 ×  𝑚𝑟  ×  (3 × 𝑟

2 + 𝑙𝐴𝐷
2 )                               (6) 

 However, the pendulum rod rotates about point A, not its center of mass B; so the parallel axis 

theorem applies again [2]: 

𝐼𝑟
𝐴 = 𝐼𝑟

𝐵 +𝑚𝑟 × 𝑙𝐴𝐵
2  =  

1

12
 ×  𝑚𝑟  ×  (3 × 𝑟

2 + 𝑙𝐴𝐷
2 ) + 𝑚𝑟  ×  𝑙𝐴𝐵

2     (7) 

 The equations of motion are written [2]: 

𝜏 = 𝐼 × �̈�      (8) 

 Knowing that the values of torques and moments of inertia are additive: 

   𝜏𝑔𝑟 + 𝜏𝑔𝑤 + 𝜏𝑚 = (𝐼𝑤
𝐴 + 𝐼𝑟

𝐴) × �̈�      (9) 

 Each term develops: 
𝑚𝑟  × g × 𝑙𝐴𝐵 × sin(𝜃) + 𝑚𝑤 × g × 𝑙𝐴𝐶 × sin(𝜃) − 𝜏𝑚 =       

𝑚𝑤(0,5 × 𝑅
2 + 𝑙𝐴𝐶

2 ) + 
1

12
 ×  𝑚𝑟  ×  (3 × 𝑟

2 + 𝑙𝐴𝐷
2 ) + 𝑚𝑟  ×  𝑙𝐴𝐵

2 )  ×  �̈�         (10) 

 The rotation of the flywheel is described by the following equations of motion: 

𝜏𝑚 = 𝐼𝑤
𝐶 × (�̇� + �̈�)                                     (11) 

                                                                    𝜏𝑚 = 0,5 × 𝑚𝑤 × 𝑅
2 × (�̇� + �̈�)                 (12) 

 The next step is to bring the above equations of motion into state-space format. A state vector is 

first defined [2]: 

   𝑥(𝑡) =  (
𝜃
�̇�
𝜔
)                            (13) 

 The derivative of the state vector with respect to time has the expression:      

�̇�(𝑡) =  (
�̇�
�̈�
�̇�

) =  

(

  
 

�̇�
𝑔 × sin(𝜃)  ×  (𝑚𝑟  ×  𝑙𝐴𝐵  +  𝑚𝑤  ×  𝑙𝐴𝐶) − 𝜏𝑚

𝑚𝑤  ×  (0,5 ×  𝑅
2  +  𝑙𝐴𝐶

2 )  + 
1
12
 × 𝑚𝑟 × (3 × 𝑟

2  +  𝑙𝐴𝐷
2 )  + 𝑚𝑟  ×  𝑙𝐴𝐵

2

𝜏𝑚
𝐼𝑤
𝐶⁄  − �̈� )

  
 

 

      (14) 

 The next step is to implement the above equation in software, to allow the simulation of the 

behavior of this dynamic system and the design of a feedback controller. 

 These data are entered into Matlab, then the Simulink work environment is used which uses 

numerical approximation methods to evaluate them with finite precision. Simulink can use several 

different numerical integration methods to calculate the output of the block, each with advantages in 

certain applications. Using the Solver pane in the Configuration Parameters dialog box (Solver Pane) 

one can select the most suitable technique for a particular application.   

 Other block diagram elements: Multiplexing and demultiplexing blocks for efficient vector 

manipulation. In this case, the state vector consists of three elements, see the equation above; Purpose 

block for viewing signals; Constant signal sources, which represent motor torque; The labels 

associated with the signals represent the names given to them by the user.  

Note that variables from the Matlab workspace are used to define the parameters of the 

Simulink model. The resulting model is presented in figure 2. 
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Fig. 2. Model in Simulink simulation environment 

 

Fig. 3. Parameterization of the model 

 We review the key hardware components of the motorcycle, sensors and actuators, and we 

will create Simulink models that can interface with the sensors and actuators in order to control the 

motorcycle. 

 A sensor is a device that detects changes in the environment. Information about the 

environment that comes from the sensors is used to change this environment in the way that is desired. 

The implementation of these changes is done by means of another class of devices, known as actuators  

[5]. 

  

Fig. 4. Connect compatible drivers 

My motorcycle has sensors and actuators. Sensors: accelerometer/gyroscope/magnetometer for 

measuring the angle of inclination of the motorcycle; rotary encoder, mounted on the flywheel motor, 

to measure the speed of the flywheel; rotary encoder, mounted on the rear wheel motor, for measuring 

the speed of the rear wheel; battery voltage sensor, which is not used for balancing, but could shut 

down the controller before it runs out of power. 

 Actuators: flywheel motor to drive the flywheel; rear wheel motor, to drive the rear wheel; 

servomotor for steering control [5]. 

Due to the inclusion of Arduino software libraries in the latest editions of Matlab, the program 

recognizes a wide range of Arduino boards, including shields, and connects to them via compatible 

drivers [6].   

 In Simulink we create a template that will be used to work with the ArduinoNano33IoT and 

test the connection: 
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      Fig. 5. ArduinoNano33IoT template                          Fig. 6. Testing the connection – step 1 

 

Fig. 7. Test the connection – step 2 

 This template will later be populated with project components.  

 

Fig. 8. The component parts of the motorcycle 

 In closed-loop control (stationary balance) the designed controller is combined to implement a 

complete balance control application that will run on the Arduino Nano 33 IoT board.  

 This allows to test the algorithm on the motorcycle and to adjust it, taking into account the 

imprecision of the model and the specific characteristics of the hardware. By the end of this exercise, you 

will have a motorcycle that balances on the spot. 

 It is followed as follows: the interfacing of hardware sensors and motors with the balance control 

algorithm; the implementation of safety features to ensure the operation of the motorcycle with minimal 
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stress on the hardware components; monitoring the physical response of the motorcycle to the control 

algorithm; adjusting the PD algorithm and gains so that the bike balances on the spot. 

 To create a high-level architecture, the model will be structured using subsystems from the 

beginning. It starts from a template model that was created previously: Arduino33IotNanoTemplate.slx. 

Open the model and add two Subsystem blocks, which will represent the motorcycle and a digital controller, 

respectively. Subsystem inputs and outputs are renamed to Import and Outport blocks inside each 

subsystem [6].   

 

Fig. 9. Charts of both subsystems 

 To add hardware components (sensors and actuators) go into the motorcycle subsystem, add 

relevant components and test all these components separately.  

 To build the safety logic, following the related steps (sensor description, comparisons, reprocessing 

of sensor measurements, etc.), we have all the elements of the state vector: the angle of the motorcycle, the 

first derivative of the angle (i.e. speed) and the speed of the flywheel. 

 

Fig. 10. Motorcycle subsystem - components needed to balance the motorcycle 

In the ideal world, we'd simply reuse the controller we've already designed to balance the bike in 

the simulation. However, in real life, there are several considerations to take into account: IMU (Inertial 

Measurement Unit) calibration; battery level, loss of balance, activation of user control.  

 Logic control can be implemented with a dedicated Simulink > Stateflow library and adding a Chart 

block from the Stateflow library in the Library Browser. 

 The control logic implementation for handling loss of balance starts with the fact that if the 

motorcycle loses balance (if the lean angle is greater than a certain threshold), the controller must be 

disabled. One can formalize this requirement in relation to the Stateflow diagram as follows: the diagram 

accepts a single input, the tilt angle; chart returns a single output equal to 1 (true) when the tilt angle is 

within certain limits and equal to 0 (false) when the tilt angle is outside the given limits. 
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Fig. 11. Simulink dedicated library 

Control logic can be implemented in various ways. We will consider the key components of the 

model below. The first thing you might notice are the user interface components, namely a Switch and a 

Lamp, both available in Simulink > Dashboard. The switch allows the user to manually disable the control 

when not needed. The lamp has no effect on the behavior of the model but visualizes the output of the 

Stateflow diagram. I also added input signals to the Stateflow diagram. 

 

Fig. 12. Stateflow Simulink diagram 

 The chart itself has four parallel states, which can be identified by dashed frames: 

✓ checkBalanced: is characterized by two states: balanced_notOK (default) and balanced_OK. The 

transition between the two states is made according to the theta angle: if the absolute value of the angle 

is less than 15°, the transition is made to the balanced_OK state. If the angle is outside this range of 

values, the transition is made to the balanced_notOK state. 

 

Fig. 13 Diagram with broken frames 

✓ checkIMUCalib: The two states are: imuNotCalibrated (default) and imuCalibrated. transition to the 

imuCalibrated state is made when the calibrationStatus signal becomes true or 1. 

✓ checkBaterry: Statuses indicate whether the battery is usable or discharged. The transition is made in 

both directions depending on the battery voltage. The switching threshold is 3.7 volts.  

✓ calculateEnable: The activation of the control depends on the simultaneous fulfillment of the previous 

conditions. That is why the AND logical operator is used: userEnable && batteryOK && 

IMUCalibrated && balanced. 

 For the control to transition to the disabled state, at least one of the conditions must not be met and 

the logical OR operator is used: Not(userEnable) || not(batteryOK) || not (IMUCalibrated) || not (balanced). 
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When calculateEnable is true, the signal to the flywheel motor is enabled. The control lamp sign turns 

green, indicating that all the conditions in the diagram are met. 

 Although the parallel states run concurrently, it must be determined when to activate each during 

the simulation. 

 

Fig. 14. PDP controller subsystem 

The last step in the design workflow is to implement a feedback controller, which will calculate the 

control action based on the sensor measurements. The feedback control law I designed for my Simscape 

model consists of three components: feedback from the angle of inclination of the pendulum (motorcycle); 

feedback from the derivative of the pendulum tilt angle (angular velocity); feedback from the flywheel 

speed. Finally, the PDP controller subsystem looks like in figure 14. 

 Since the research work is very complex, the stages completed can only be presented in detail in 

the form of the final results. 

4. Conclusions 

 In this paper, I wanted to present some of my research on self-balancing in motorcycles by which 

the mechatronic system balances itself, and the connection to Simulink (multi-domain simulation 

environment and model-based design) can be changed in real time, the parameters of SET. 

 "Study on the mechatronic system with self-balance" is a small part of a complex research study 

done by me, and this paper represents a first part of the analysis and implementation of a feedback controller 

and other components related to center of gravity balancing of a motorcycle and its demonstration through 

simulation programs such as Matlab, Simulink, Simscape Multibody, Simulink Support Package for Arduino 

Hardware, etc.  
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